Inscribed Angle Theorem - Definition, Theorem, Proof, Examples (2024)

The inscribed angle theorem mentions that the angle inscribed inside a circle is always half the measure of the central angle or the intercepted arc that shares the endpoints of the inscribed angle's sides. In a circle, the angle formed by two chords with the common endpoints of a circle is called an inscribed angle and the common endpoint is considered as the vertex of the angle. In this section, we will learn about the inscribed angle theorem, the proof of the theorem, and solve a few examples.

1.What is Inscribed Angle Theorem?
2.Properties of Inscribed Angle Theorem
3.Proof of Inscribed Angle Theorem
4.FAQs on Inscribed Angle Theorem

What is Inscribed Angle Theorem?

The inscribed angle theorem is also called the angle at the center theorem as the inscribed angle is half of the central angle. Since the endpoints are fixed, the central angle is always the same no matter where it is on the same arc between the endpoints. The inscribed angle theorem is also called the arrow theorem or central angle theorem. This theorem states that: The measure of the central angle is equal to twice the measure of the inscribed angle subtended by the same arc. OR. An inscribed angle is half of a central angle that subtends the same arc. OR. The angle at the center of a circle is twice any angle at the circumference subtended by the same arc. We need to keep in mind these three terms for the theorem:

  • An inscribed angle is an angle whose vertex lies on the circle with its two sides as the chords of the same circle.
  • A central angle is an angle whose vertex lies at the center of the circle with two radii as the sides of the angle.
  • The intercepted arc is an angle formed by the ends of two chords on a circle's circumference.

Inscribed Angle Theorem - Definition, Theorem, Proof, Examples (1)

In the above image, AB = the intercepted arc, θ = the inscribed angle, and 2θ = the central angle.

Properties of Inscribed Angle Theorem

An inscribed angle theorem has three basic properties that are connected with the central angle, they are:

  • The inscribed angle subtended by the same arc is equal. (see below image for reference)
  • The inscribed angle in a semicircle is 90°.
  • Central angles subtended by arcs are of the same length.

Inscribed Angle Theorem - Definition, Theorem, Proof, Examples (2)

In the image above, we see that....

Proof of Inscribed Angle Theorem

To prove the inscribed angle theorem we need to consider three cases:

  1. Inscribed angle is between a chord and the diameter of a circle.
  2. Diameter is between the rays of the inscribed angle.
  3. Diameter is outside the rays of the inscribed angle.

Case 1. Inscribed angle is between a chord and the diameter of a circle.

Here we need to prove that ∠AOB = 2θ

Inscribed Angle Theorem - Definition, Theorem, Proof, Examples (3)

In the above image, let us consider that ∆OBD is an isosceles triangle where OD = OB = radius of the circle. Therefore, ∠ODB = ∠DBO = inscribed angle = θ. The diameter AD is a straight line hence ∠BOD = 180 - ∠AOB(call it x). According to the angle sum property, ∠ODB + ∠DBO + ∠BOD = 180°.

θ + θ + (180 - x) = 180

2θ + 180 - x = 180

2θ - x = 180 - 180

2θ - x = 0

x = 2θ.

Therefore, ∠AOB = 2θ. Hence proved.

Case 2: Diameter is between the rays of the inscribed angle.

Here we need to prove that ∠ACB = 2θ

Inscribed Angle Theorem - Definition, Theorem, Proof, Examples (4)

In the above image, we draw a diameter in dotted lines that bisect both the angles as seen i.e. θ = θ1 + θ2 and a = a1 + a2. From case 1, we already that a1 = 2θ1 and a2 = 2θ2. When we add the angles, we get:

a1 + a2 = 2θ1 + 2θ2

a1 + a2 = 2 (θ1 + θ2)

a1 + a2 = 2θ

a = 2θ

Hence proved that ∠ACB = 2θ.

Case 3: Diameter is outside the rays of the inscribed angle.

Need to prove a = 2θ in the below circle.

Inscribed Angle Theorem - Definition, Theorem, Proof, Examples (5)

From the above circle, we already know,

a1 = 2θ1

2 (θ1 + θ) = a1 + a

But, a1 = 2θ1 and a2 = 2θ2. By substituting we get,

1 + 2θ = 2θ1 + a

a = 2θ.

Hence proved.

Related Topics

Listed below are a few topics related to the inscribed angle theorem, take a look.

  • Consecutive Interior Angle
  • Exterior Angle Theorem
  • Central Angle Calculator
  • Bisect

FAQs on Inscribed Angle Theorem

What is Meant by Inscribed Angle Theorem?

Inscribed angle theorem is also called as central angle theorem where it states that the angle subtended by an arc at the center of the circle is double the angle subtended by it at any other point on the circumference of the circle.

What Does the Inscribed Angle Theorem State?

The inscribed angle theorem states that an angle inscribed in a circle is half of the central angle that is subtends the same arc on the circle.

What is an Inscribed Angle?

The angle subtended by an arc at any point on the circle is called an inscribed angle.

What is the Difference Between Central Angle and Inscribed Angle?

Central angle is the angle subtended by an arc at the center of a circle. Inscribed angle is an angle subtended by an arc at any point on the circumference of a circle.

Inscribed Angle Theorem - Definition, Theorem, Proof, Examples (2024)

FAQs

Inscribed Angle Theorem - Definition, Theorem, Proof, Examples? ›

What is Inscribed Angle Theorem? The inscribed angle theorem is also called the angle at the center theorem as the inscribed angle is half of the central angle. Since the endpoints are fixed, the central angle is always the same no matter where it is on the same arc between the endpoints.

What are the 4 theorems on inscribed angles? ›

Inscribed Angles Intercepting Arcs Theorem

Inscribed angles that intercept the same arc are congruent. Angles Inscribed in a Semicircle Theorem Angles inscribed in a semicircle are right angles. Cyclic Quadrilateral Theorem The opposite angles of a cyclic quadrilateral are supplementary.

What is an inscribed angle and examples? ›

An inscribed angle in a circle is formed by two chords that have a common end point on the circle. This common end point is the vertex of the angle. Here, the circle with center has the inscribed angle ∠ A B C . The other end points than the vertex, and define the intercepted arc A C ⌢ of the circle.

What is the theorem 1 of the inscribed angle? ›

The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2θ that subtends the same arc on the circle. Therefore, the angle does not change as its vertex is moved to different positions on the circle.

What is the circumferential angle theorem? ›

Consider a circle with center O and two distinct points on the circle A and B . If C is a third point on the circle not equal to either A or B , then the circumferential angle at C subtending the arc AB ⁢ is the angle ACB ⁢ ⁢ .

What are the 4 triangle theorems? ›

SSS (Side-Side-Side) SAS (Side-Angle-Side) ASA (Angle-Side-Angle) AAS (Angle-Angle-Side)

What is the formula for finding the angle measure of an inscribed angle? ›

The measure of an inscribed angle is equal to half the measure of the central angle that goes with the intercepted arc. The measure of an inscribed angle is equal to half the measure of its intercepted arc.

Which inscribed angles are congruent? ›

The Inscribed Angle Theorem states that the measure of an inscribed angle is half the measure of its intercepted arc. Inscribed angles that intercept the same arc are congruent. This is called the Congruent Inscribed Angles Theorem and is shown below.

Which inscribed angle is obtuse? ›

Theorem: An angle inscribed in an arc LESS than a semi -circle will be OBTUSE, i.e. greater than 900. An angle inscribed in an arc GREATER than a semi -circle will be ACUTE.

What is the relationship between an inscribed angle and a central angle? ›

Inscribed Angle: An inscribed angle is an angle formed by two chords in a circle. The measure of an inscribed angle is one-half of the measure of the arc it intercepts. It is also one-half of the measure of the central angle that intercepts the same arc.

What are the conjectures of inscribed angles? ›

Conjecture (Inscribed Angles Conjecture I ): In a circle, the measure of an inscribed angle is half the measure of the central angle with the same intercepted arc.. Corollary (Inscribed Angles Conjecture II ): In a circle, two inscribed angles with the same intercepted arc are congruent.

What does an inscribed angle look like? ›

An inscribed angle in a circle is formed by two chords that have a common end point on the circle. This common end point is the vertex of the angle. Here, the circle with center has the inscribed angle ∠ A B C . The other end points than the vertex, and define the intercepted arc A C ⌢ of the circle.

What is the definition of inscribed angle in math? ›

An inscribed angle is an angle whose vertex sits on the circumference of a circle. The vertex is the common endpoint of the two sides of the angle. The two sides are chords of the circle.

Why is the central angle twice the inscribed angle? ›

A central angle is twice the measure of an inscribed angle subtended by the same arc. COB since both are subtended by arc(CB). CAB since both are subtended by arc(CB). Note that a consequence of this property is that any inscribed angle subtended by a semicircle is a right angle, as shown in the example above right.

What are the 4 circle theorems? ›

Alternate segment circle theorem. Angle at the centre circle theorem. Angles in the same segment circle theorem. Angle in a semi circle theorem.

What is the theorem 4 of lines and angles? ›

Theorem 4. If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary.

What are the 4 special angles? ›

Angles such as 30°, 45°, 60°, 90°, or 120° are called special angles. They all divide evenly into 360°.

Top Articles
Latest Posts
Article information

Author: Terrell Hackett

Last Updated:

Views: 5698

Rating: 4.1 / 5 (52 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Terrell Hackett

Birthday: 1992-03-17

Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

Phone: +21811810803470

Job: Chief Representative

Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.