9.2: Inscribed angle (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    23634
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    We say that a triangle is inscribed in the circle \(\Gamma\) if all its vertices lie on \(\Gamma\).

    Theorem \(\PageIndex{1}\)

    Let \(\Gamma\) be a circle with the center \(O\), and \(X, Y\) be two distinct points on \(\Gamma\). Then \(\triangle XPY\) is inscribed in \(\Gamma\) if and only if

    \[2 \cdot \measuredangle XPY \equiv \measuredangle XOY.\]

    Equivalently, if and only if

    \(\measuredangle XPY \equiv \dfrac{1}{2} \cdot \measuredangle XOY\) or \(\measuredangle XPY \equiv \pi + \dfrac{1}{2} \cdot \measuredangle XOY.\)

    Proof

    9.2: Inscribed angle (2)9.2: Inscribed angle (3)9.2: Inscribed angle (4)

    the "only if" part. Let \((PQ)\) be the tangent line to \(\Gamma\) at \(P\). By Theorem 9.1.1,

    \(2 \cdot \measuredangle QPX \equiv \measuredangle POX\), \(2 \cdot \measuredangle QPY \equiv \measuredangle POY.\)

    Subtracting one identity from the other, we get 9.2.1.

    "If" part. Assume that 9.2.1 holds for some \(P \not\in \Gamma\). Note that \(\measuredangle XOY \ne 0\). Therefore, \(\measuredangle XPY \ne 0\) nor \(\pi\); that is, \(\measuredangle PXY\) is nondegenerate.

    The line \((PX)\) might be tangent to \(\Gamma\) at the point \(X\) or intersect \(\Gamma\) at another point; in the latter case, suppose that \(P'\) denotes this point of intersection.

    In the first case, by Theorem 9.1, we have

    \(2 \cdot \measuredangle PXY \equiv \measuredangle XOY \equiv 2 \cdot \measuredangle XPY.\)

    Applying the transversal property (Theorem 7.3.1), we get that \((XY) \parallel (PY)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    In the second case, applying the "if" part and that \(P, X\), and \(P'\) lie on one line (see Exercise 2.4.2) we get that

    \(\begin{array} {rcl} {2 \cdot \measuredangle P'PY} & \equiv & {2 \cdot \measuredangle XPY \equiv \measuredangle XOY \equiv} \\ {} & \equiv & {2 \cdot \measuredangle XP'Y \equiv 2 \cdot \measuredangle XP'P.} \end{array}\)

    Again, by transversal property, \((PY) \parallel (P'Y)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    Exercise \(\PageIndex{1}\)

    Let \(X, X', Y\), and \(Y'\) be distinct points on the circle \(\Gamma\). Assume \((XX')\) meets \((YY')\) at a point \(P\). Show that

    (a) \(2 \cdot \measuredangle XPY \equiv \measuredangle XOY + \measuredangle X'OY'\);

    (b) \(\triangle PXY \sim \triangle PY'X'\);

    (c) \(PX \cdot PX' = |OP^2 - r^2|\), where \(O\) is the center and \(r\) is the radius of \(\Gamma\).

    9.2: Inscribed angle (5)

    (The value \(OP^2 - r^2\) is called the power of the point \(P\) with respect to the circle \(\Gamma\). Part (c) of the exercise makes it a useful tool to study circles, but we are not going to consider it further in the book.)

    Hint

    (a) Apply Theorem \(\PageIndex{1}\) for \(\angle XX'Y\) and \(\angle X'YY'\) and Theorem 7.4.1 for \(\triangle PYX'\).

    (b) If \(P\) is inside of \(\Gamma\) then \(P\) lies between \(X\) and \(X'\) and between \(Y\) and \(Y'\) in this case \(\angle XPY\) is vertical to \(\angle X'PY'\). If \(P\) is outside of \(\Gamma\) then \([PX) = [PX')\) and \([PY) = [PY')\). In both cases we have that \(\measuredangle XPY = \measuredangle X'PY'\).

    Applying Theorem \(\PageIndex{1}\) and Exercise 2.4.2, we get that

    \(2 \cdot \measuredangle Y'X'P \equiv 2 \cdot \measuredangle Y'X'X \equiv 2 \cdot \measuredangle Y'YX \equiv 2 \dot \measuredangle PYX.\)

    According to Theorem 3.3.1, \(\angle Y'X'P\) and \(\angle PYX\) have the same sign; therefore \(\measuredangle Y'X'P = \measuredangle PYX\). It remains to apply the AA similarity condition.

    (c) Apply (b) assuming \([YY']\) is the diameter of \(\Gamma\).

    Exercise \(\PageIndex{2}\)

    Three chords \([XX']\), \([YY']\), and \([ZZ']\) of the circle \(\Gamma\) intersect at a point \(P\). Show that

    \(XY' \cdot ZX' \cdot YZ' = X'Y \cdot Z'X \cdot Y'Z.\)

    9.2: Inscribed angle (6)

    Hint

    Apply Exerciese \(\PageIndex{1} b three times.

    Exercise \(\PageIndex{3}\)

    Let \(\Gamma\) be a circumcircle of an acute triangle \(ABC\). Let \(A'\) and \(B'\) denote the second points of intersection of the altitudes from \(A\) and \(B\) with \(\Gamma\). Show that \(\triangle A'B'C\) is isosceles.

    9.2: Inscribed angle (7)

    Hint

    Let \(X\) and \(Y\) be the foot points of the altitudes from \(A\) and \(B\). Suppose that \(O\) denotes the circumcenter.

    By AA condition, \(\triangle AXC \sim \triangle BYC\). Then

    \(\measuredangle A'OC \equiv 2 \cdot \measuredangle A'AC \equiv - 2 \cdot \measuredangle B'BC \equiv - \measuredangle B'OC.\)

    By SAS, \(\triangle A'OC \cong \triangle B'OC\). Therefore, \(A'C = B'C\).

    Exercise \(\PageIndex{4}\)

    Let \([XY]\) and \([X'Y']\) be two parallel chords of a circle. Show that \(XX' = YY'\).

    Exercise \(\PageIndex{5}\)

    Watch “Why is pi here? And why is it squared? A geo- metric answer to the Basel problem” by Grant Sanderson. (It is available on YouTube.)

    Prepare one question.

    9.2: Inscribed angle (2024)

    FAQs

    How do you answer an inscribed angle? ›

    Inscribed Angle Theorem:

    The measure of an inscribed angle is half the measure of the intercepted arc. That is, m ∠ A B C = 1 2 m ∠ A O C . This leads to the corollary that in a circle any two inscribed angles with the same intercepted arcs are congruent.

    How do you find the value of an inscribed angle? ›

    If we know the measure of the central angle with shared endpoints, then the inscribed angle is just half of that angle. If we know the measure of the arc our inscribed angle intercepts, we just divide that in half to get the measure of the inscribed angle.

    Are inscribed angles always 90 degrees? ›

    The inscribed angle theorem is used in many proofs of elementary Euclidean geometry of the plane. A special case of the theorem is Thales' theorem, which states that the angle subtended by a diameter is always 90°, i.e., a right angle.

    What is the rule for inscribed angles? ›

    The Inscribed Angle Theorem states that the measure of an inscribed angle is half the measure of its intercepted arc. Inscribed angles that intercept the same arc are congruent. This is called the Congruent Inscribed Angles Theorem and is shown below.

    Do inscribed angles equal 180? ›

    Because a semicircle (half a circle) creates an intercepted arc that measures 180°, therefore, any corresponding inscribed angle would measure half of it, as Varsity Tutors nicely states.

    What are the 4 theorems on inscribed angles? ›

    Inscribed Angles Intercepting Arcs Theorem

    Inscribed angles that intercept the same arc are congruent. Angles Inscribed in a Semicircle Theorem Angles inscribed in a semicircle are right angles. Cyclic Quadrilateral Theorem The opposite angles of a cyclic quadrilateral are supplementary.

    Are all inscribed angles equal? ›

    Inscribed angles subtended by the same arc are equal. If a pair of arcs in the same circle are congruent, their inscribed angles are equal. If a pair of circles are congruent, then inscribed angles subtended by congruent arcs, or arcs of equal measure, will be equal.

    What is the degrees inscribed angle? ›

    The inscribed angle theorem states that the inscribed angle has one half the degree of the central angle that shares the same arc with the inscribed angle.

    Which angle is closest to 90 degrees? ›

    Angles between 0 and 90 degrees (0°< θ <90°) are called acute angles. Angles between 90 and 180 degrees (90°< θ <180°) are known as obtuse angles. Angles that are 90 degrees (θ = 90°) are right angles.

    What is the formula for finding the angle measure of an inscribed angle? ›

    The measure of an inscribed angle is equal to half the measure of the central angle that goes with the intercepted arc. The measure of an inscribed angle is equal to half the measure of its intercepted arc.

    How will you know that an inscribed angle is a right? ›

    Corollary (Inscribed Angles Conjecture III ): Any angle inscribed in a semi-circle is a right angle. Proof: The intercepted arc for an angle inscribed in a semi-circle is 180 degrees. Therefore the measure of the angle must be half of 180, or 90 degrees. In other words, the angle is a right angle.

    What is the formula for arcs and inscribed angles? ›

    An inscribed angle is formed when two lines pass through the circle's circumference and meet at a vertex on another part of the circle's circumference. The intercepted arc that is formed is equal to the inscribed angle, multiplied by two (intercepted arc measure = inscribed angle * 2).

    How will you know that an inscribed angle is a right angle? ›

    Corollary (Inscribed Angles Conjecture III ): Any angle inscribed in a semi-circle is a right angle. Proof: The intercepted arc for an angle inscribed in a semi-circle is 180 degrees. Therefore the measure of the angle must be half of 180, or 90 degrees. In other words, the angle is a right angle.

    How do you solve an inscribed circle? ›

    Step 1: We draw angle bisectors for 2 angles and mark their intersection. Step 2: Next, we drop a perpendicular line from the incenter of the circle to one edge of the triangle. Step 3: Finally, we construct a circle where the perpendicular line from Step 2 is the radius.

    How to solve a circ*mscribed angle? ›

    According to the circ*mscribed angle theorem, a circ*mscribed angle is supplementary to the central angle that intercepts the same arc. Thus, to solve a circ*mscribed angle, find the supplement of the central angle (180 - x, where x is the central angle).

    Top Articles
    Latest Posts
    Article information

    Author: Greg Kuvalis

    Last Updated:

    Views: 5704

    Rating: 4.4 / 5 (55 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Greg Kuvalis

    Birthday: 1996-12-20

    Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

    Phone: +68218650356656

    Job: IT Representative

    Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

    Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.