6.14: Inscribed Angles in Circles (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    5030
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Vertex on a circle and chords as sides, and whose measure equals half the intercepted arc.

    An inscribed angle is an angle with its vertex on the circle and whose sides are chords. The intercepted arc is the arc that is inside the inscribed angle and whose endpoints are on the angle. The vertex of an inscribed angle can be anywhere on the circle as long as its sides intersect the circle to form an intercepted arc.

    6.14: Inscribed Angles in Circles (1)

    The Inscribed Angle Theorem states that the measure of an inscribed angle is half the measure of its intercepted arc.

    6.14: Inscribed Angles in Circles (2)

    \(m\angle ADC=\dfrac{1}{2}m\widehat{AC}\) and \(m\widehat{AC}=2m\angle ADC\)

    Inscribed angles that intercept the same arc are congruent. This is called the Congruent Inscribed Angles Theorem and is shown below.

    6.14: Inscribed Angles in Circles (3)

    \(\angle ADB\) and \(\angle ACB\) intercept \(\widehat{AB}\), so \(m\angle ADB=m\angle ACB\). Similarly, \(\angle DAC\) and \(\angle DBC\) intercept \(\widehat{DC}\), so \(m\angle DAC=m\angle DBC\).

    An angle intercepts a semicircle if and only if it is a right angle (Semicircle Theorem). Anytime a right angle is inscribed in a circle, the endpoints of the angle are the endpoints of a diameter and the diameter is the hypotenuse.

    What if you had a circle with two chords that share a common endpoint? How could you use the arc formed by those chords to determine the measure of the angle those chords make inside the circle?

    Example \(\PageIndex{1}\)

    Find \(m\widehat{DC}\) and \(m\angle ADB\).

    6.14: Inscribed Angles in Circles (4)

    Solution

    From the Inscribed Angle Theorem:

    \(\begin{aligned} m\widehat{DC}&=2\cdot 45^{\circ}=90^{\circ} \\ m\angle ADB&=12\cdot 76^{\circ}=38^{\circ}\end{aligned}\)

    Example \(\PageIndex{2}\)

    Find \(m\angle ADB\) and \(m\angle ACB\).

    6.14: Inscribed Angles in Circles (5)

    Solution

    The intercepted arc for both angles is \(\widehat{AB}\). Therefore,

    \(\begin{aligned} m\angle ADB&=12\cdot 124^{\circ}=62^{\circ} \\ m\angle ACB&=12\cdot 124^{\circ}=62^{\circ}\end{aligned}\)

    Example \(\PageIndex{3}\)

    Find \(m\angle DAB\) in \(\bigodot C\).

    6.14: Inscribed Angles in Circles (6)

    Solution

    C is the center, so \(\overline{DB}\) is a diameter. \(\angle DAB\)'s endpoints are on the diameter, so the central angle is \(180^{\circ}\).

    \(m\angle DAB=\dfrac{1}{2}\cdot 180^{\circ}=90^{\circ}\).

    Example \(\PageIndex{4}\)

    Fill in the blank: An inscribed angle is ____________ the measure of the intercepted arc.

    Solution

    half

    Example \(\PageIndex{5}\)

    Fill in the blank: A central angle is ________________ the measure of the intercepted arc.

    Solution

    equal to

    Review

    Fill in the blanks.

    1. An angle inscribed in a ________________ is \(90^{\circ}\).
    2. Two inscribed angles that intercept the same arc are _______________.
    3. The sides of an inscribed angle are ___________________.
    4. Draw inscribed angle \(\angle JKL\) in \(\bigodot M\). Then draw central angle \(\angle JML\). How do the two angles relate?

    Find the value of \(x\) and/or \(y\) in \(\bigodot A\).

    Solve for \(x\).

    1. Fill in the blanks of the Inscribed Angle Theorem proof.

    Given: Inscribed \(\angle ABC\) and diameter \(\overline{BD}\)

    Prove: \(m\angle ABC=12m\widehat{AC}

    Statement Reason

    1. Inscribed \(\angle ABC\) and diameter \(\overline{BD}\)

    \(m\angle ABE=x^{\circ}\) and \(m\angle CBE=y^{\circ}\)

    1.
    2. \(x^{\circ}+y^{\circ}=m\angle ABC\) 2.
    3. 3. All radii are congruent
    4. 4. Definition of an isosceles triangle
    5. \(m\angle EAB=x^{\circ}\) and \(m\angle ECB=y^{\circ}\) 5.
    6. \(m\angle AED=2x^{\circ}\) and \(m\angle CED=2y^{\circ}\) 6.
    7. \(m\widehat{AD}=2x^{\circ}\) and \(m\widehat{DC}=2y^{\circ}\) 7.
    8. 8. Arc Addition Postulate
    9. \(m\widehat{AC}=2x^{\circ}+2y^{\circ}\) 9.
    10. 10. Distributive PoE
    11. \(m\widehat{AC}=2m\angle ABC\) 11.
    12. \(m\angle ABC=\dfrac{1}{2}m\widehat{AC}\) 12.

    Vocabulary

    Term Definition
    central angle An angle formed by two radii and whose vertex is at the center of the circle.
    chord A line segment whose endpoints are on a circle.
    circle The set of all points that are the same distance away from a specific point, called the center.
    diameter A chord that passes through the center of the circle. The length of a diameter is two times the length of a radius.
    Inscribed Angle An inscribed angle is an angle with its vertex on the circle. The measure of an inscribed angle is half the measure of its intercepted arc.
    intercepted arc The arc that is inside an inscribed angle and whose endpoints are on the angle.
    radius The distance from the center to the outer rim of a circle.
    Arc An arc is a section of the circumference of a circle.
    Intercepts The intercepts of a curve are the locations where the curve intersects the x and y axes. An x intercept is a point at which the curve intersects the x-axis. A y intercept is a point at which the curve intersects the y-axis.
    Inscribed Angle Theorem The Inscribed Angle Theorem states that the measure of an inscribed angle is half the measure of its intercepted arc.
    Semicircle Theorem The Semicircle Theorem states that any time a right angle is inscribed in a circle, the endpoints of the angle are the endpoints of a diameter and the diameter is the hypotenuse.

    Additional Resources

    Interactive Element

    Video: Inscribed Angles in Circles Principles - Basic

    Activities: Inscribed Angles in Circles Discussion Questions

    Study Aids: Inscribed in Circles Study Guide

    Practice: Inscribed Angles in Circles

    6.14: Inscribed Angles in Circles (2024)

    FAQs

    6.14: Inscribed Angles in Circles? ›

    Vertex on a circle and chords as sides, and whose measure equals half the intercepted arc. An inscribed angle is an angle with its vertex on the circle and whose sides are chords.

    How do you find inscribed angles in a circle? ›

    Step 1: Determine the arc that corresponds to the inscribed angle. Step 2: Use your knowledge of circles and arc measures to determine the missing measure for the intercepted arc. Step 3: Determine the measure of the inscribed angle using the formula measure of angle = half of the measure of its intercepted arc.

    What is the rule for inscribed angles? ›

    The Inscribed Angle Theorem states that the measure of an inscribed angle is half the measure of its intercepted arc. Inscribed angles that intercept the same arc are congruent. This is called the Congruent Inscribed Angles Theorem and is shown below.

    Do inscribed angles equal 180? ›

    Corollary (Inscribed Angles Conjecture III): Any angle inscribed in a semi-circle is a right angle. Proof: The intercepted arc for an angle inscribed in a semi-circle is 180 degrees. Therefore the measure of the angle must be half of 180, or 90 degrees.

    What is the formula for arcs and inscribed angles? ›

    An inscribed angle is formed when two lines pass through the circle's circumference and meet at a vertex on another part of the circle's circumference. The intercepted arc that is formed is equal to the inscribed angle, multiplied by two (intercepted arc measure = inscribed angle * 2).

    What is the formula for finding the angle measure of an inscribed angle? ›

    The measure of an inscribed angle is equal to half the measure of the central angle that goes with the intercepted arc. The measure of an inscribed angle is equal to half the measure of its intercepted arc.

    What are the formulas for inscribed circle? ›

    For any triangle △ABC, let s = 12 (a+b+c). Then the radius r of its inscribed circle is r=(s−a)tan12A=(s−b)tan12B=(s−c)tan12C.

    What are the 4 theorems on inscribed angles? ›

    Inscribed Angles Intercepting Arcs Theorem

    Inscribed angles that intercept the same arc are congruent. Angles Inscribed in a Semicircle Theorem Angles inscribed in a semicircle are right angles. Cyclic Quadrilateral Theorem The opposite angles of a cyclic quadrilateral are supplementary.

    Are inscribed angles always right angles? ›

    Inscribed Angle of a Circle

    An angle inscribed in a semi-circle is a right angle. Angles formed by drawing lines from the ends of the diameter of a circle to its circumference form a right angle always. In a circle, inscribed angles that intercept the same arc are congruent.

    What is 180 degree angle in circle? ›

    A 180 ∘ angle is just one, straight line, which is why it is known as a "straight angle." This angle is achieved by measuring 180 degrees, or halfway, around a circle from any given point. It is equal to two 90-degree angles put together.

    How to calculate angles in circles? ›

    An interior angle has its vertex at the intersection of two lines that intersect inside a circle. The sides of the angle lie on the intersecting lines. The measure of an interior angle is the average of the measures of the two arcs that are cut out of the circle by those intersecting lines.

    What is a formula for a circle? ›

    A circle is a closed curve that is drawn from the fixed point called the center, in which all the points on the curve are having the same distance from the center point of the center. The equation of a circle with (h, k) center and r radius is given by: (x-h)2 + (y-k)2 = r2. This is the standard form of the equation.

    How to find angles within a circle? ›

    Interior angles are formed inside a circle at the intersection of two line segments. To find the measure of an interior angle, add its two intercepted arcs, then divide that sum by 2. Central angles are found by identifying the intercepted arc along the circle's circumference and multiplying its length by 360 degrees.

    What is the formula for the area of the inscribed circle? ›

    When a circle is inscribed in a square, the length of each side of the square is equal to the diameter of the circle. That is, the diameter of the inscribed circle is units and therefore the radius is units. The area of a circle of radius units is A = π r 2 .

    Top Articles
    Latest Posts
    Article information

    Author: Errol Quitzon

    Last Updated:

    Views: 5712

    Rating: 4.9 / 5 (59 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Errol Quitzon

    Birthday: 1993-04-02

    Address: 70604 Haley Lane, Port Weldonside, TN 99233-0942

    Phone: +9665282866296

    Job: Product Retail Agent

    Hobby: Computer programming, Horseback riding, Hooping, Dance, Ice skating, Backpacking, Rafting

    Introduction: My name is Errol Quitzon, I am a fair, cute, fancy, clean, attractive, sparkling, kind person who loves writing and wants to share my knowledge and understanding with you.